overlap function - definition. What is overlap function
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

%ما هو (من)٪ 1 - تعريف

Overlap-add Method; Overlap-add; Overlap add; Overlap-add method

Orbital overlap         
CONCENTRATION OF CHEMICAL ORBITALS ON ADJACENT ATOMS
Overlap matrix; Wikipedia talk:Articles for creation/Orbital Overlap
In chemical bonds, an orbital overlap is the concentration of orbitals on adjacent atoms in the same regions of space. Orbital overlap can lead to bond formation.
Overlap (railway signalling)         
LENGTH OF RAILWAY TRACK LEFT CLEAR BEYOND A STOP SIGNAL AS A SAFETY MEASURE
Overlap (railway); Signal overlap
An overlap in railway signalling is the length of track beyond a stop signal that is proved to be clear of vehicles in the controls of the previous signal, as a safety margin.
Function (mathematics)         
  • A binary operation is a typical example of a bivariate function which assigns to each pair <math>(x, y)</math> the result <math>x\circ y</math>.
  • A function that associates any of the four colored shapes to its color.
  • Together, the two square roots of all nonnegative real numbers form a single smooth curve.
  • Graph of a linear function
  • The function mapping each year to its US motor vehicle death count, shown as a [[line chart]]
  • The same function, shown as a bar chart
  • Graph of a polynomial function, here a quadratic function.
  • Graph of two trigonometric functions: [[sine]] and [[cosine]].
  • right
ASSOCIATION OF A SINGLE OUTPUT TO EACH INPUT
Mathematical Function; Mathematical function; Function specification (mathematics); Mathematical functions; Empty function; Function (math); Ambiguous function; Function (set theory); Function (Mathematics); Functions (mathematics); Domain and range; Functional relationship; G(x); H(x); Function notation; Output (mathematics); Ƒ(x); Overriding (mathematics); Overriding union; F of x; Function of x; Bivariate function; Functional notation; Function of several variables; Y=f(x); ⁡; Draft:The Repeating Fractional Function; Image (set theory); Mutivariate function; Draft:Specifying a function; Function (maths); Functions (math); Functions (maths); F(x); Empty map; Function evaluation
In mathematics, a function from a set to a set assigns to each element of exactly one element of .; the words map, mapping, transformation, correspondence, and operator are often used synonymously.

ويكيبيديا

Overlap–add method

In signal processing, the overlap–add method is an efficient way to evaluate the discrete convolution of a very long signal x [ n ] {\displaystyle x[n]} with a finite impulse response (FIR) filter h [ n ] {\displaystyle h[n]} :

where h[m] = 0 for m outside the region [1, M]. This article uses common abstract notations, such as y ( t ) = x ( t ) h ( t ) , {\textstyle y(t)=x(t)*h(t),} or y ( t ) = H { x ( t ) } , {\textstyle y(t)={\mathcal {H}}\{x(t)\},} in which it is understood that the functions should be thought of in their totality, rather than at specific instants t {\textstyle t} (see Convolution#Notation).

The concept is to divide the problem into multiple convolutions of h[n] with short segments of x [ n ] {\displaystyle x[n]} :

x k [ n ]     { x [ n + k L ] , n = 1 , 2 , , L 0 , otherwise , {\displaystyle x_{k}[n]\ \triangleq \ {\begin{cases}x[n+kL],&n=1,2,\ldots ,L\\0,&{\text{otherwise}},\end{cases}}}

where L is an arbitrary segment length. Then:

x [ n ] = k x k [ n k L ] , {\displaystyle x[n]=\sum _{k}x_{k}[n-kL],\,}

and y[n] can be written as a sum of short convolutions:

y [ n ] = ( k x k [ n k L ] ) h [ n ] = k ( x k [ n k L ] h [ n ] ) = k y k [ n k L ] , {\displaystyle {\begin{aligned}y[n]=\left(\sum _{k}x_{k}[n-kL]\right)*h[n]&=\sum _{k}\left(x_{k}[n-kL]*h[n]\right)\\&=\sum _{k}y_{k}[n-kL],\end{aligned}}}

where the linear convolution y k [ n ]     x k [ n ] h [ n ] {\displaystyle y_{k}[n]\ \triangleq \ x_{k}[n]*h[n]\,} is zero outside the region [1, L + M − 1]. And for any parameter N L + M 1 , {\displaystyle N\geq L+M-1,\,} it is equivalent to the N-point circular convolution of x k [ n ] {\displaystyle x_{k}[n]\,} with h [ n ] {\displaystyle h[n]\,} in the region [1, N].  The advantage is that the circular convolution can be computed more efficiently than linear convolution, according to the circular convolution theorem:

where:

  • DFTN and IDFTN refer to the Discrete Fourier transform and its inverse, evaluated over N discrete points, and
  • L is customarily chosen such that N = L+M-1 is an integer power-of-2, and the transforms are implemented with the FFT algorithm, for efficiency.